УΔК 378.147

DOI: 10.54835/18102883_2024_35_7

ЗНАЧИМОСТЬ СКВОЗНЫХ ЦИФРОВЫХ ТЕХНОЛОГИЙ В ПОДГОТОВКЕ БУДУЩИХ ИНЖЕНЕРОВ (НА ПРИМЕРЕ ИСКУССТВЕННОГО ИНТЕЛЛЕКТА)

Моисеева Наталья Александровна,

кандидат педагогических наук, доцент, доцент кафедры прикладной математики и фундаментальной информатики, nat lion@mail.ru

Омский государственный технический университет, Россия, 625003, г. Омск, пр. Мира, 11

Настояший уровень развития сквозных цифровых технологий обуславливает их интенсивное внедрение во все отрасли мировой цифровой экономики. В промышленной отрасли эти технологии определяют темпы роста производительности труда, уровень конкурентоспособности предприятий. Роботы, большие данные, машинное обучение и другие формы искусственного интеллекта в наибольшей степени ускоряют цифровую трансформацию экономики. Особо остро стоит вопрос подготовки высококвалифицированных инженеров в области технологий искусственного интеллекта в цифровых отраслевых решениях при выполнении профессиональных функций. В статье рассматривается такой феномен цифровой экономики, как «цифровые компетенции в области искусственного интеллекта» у студентов инженерно-технического профиля, выявлены особенности этих компетенций, их интерпретация. Показан опыт подготовки будуших инженеров в области искусственного интеллекта при обучении дисциплинам «Машинное обучение», «Интеллектуальный анализ данных». Предложено содержание этих дисциплин, определены методические аспекты обучения с целью формирования у студентов цифровых компетенций в области искусственного интеллекта в течение всей жизни.

Ключевые слова: инженерное образование, инженер, искусственный интеллект, машинное обучение, сквозные цифровые технологии, цифровые компетенции в области искусственного интеллекта

Введение

Вектор долгосрочного научно-технологического и цифрового развития Российской Федерации (РФ) до 2035 г. регламентируется нормативным документом [1], в котором Национальная технологическая инициатива (НТИ) выделена как один из приоритетов реализации государственной научно-технической политики и составляющей суверенитета РФ. К приоритетным направлениям НТИ, в которых особенно востребованы грамотные и высококвалифицированные инженерные кадры, относят: AutoNet (транспортные средства на основе интеллектуальной инфраструктуры), EnergyNet (сервис интеллектуальной энергетики) и др. Ведущими в реализации цели НТИ определены сквозные цифровые технологии¹ (СЦТ), под которыми понимаются ключевые научно-технические направления, оказывающие значительное влияние на развитие и эволюцию отраслевых рынков. Примерами СЦТ являются такие прорывные цифровые технологии, как квантовые технологии, сенсорика и роботизированные системы, технологии

беспроводной связи, новые материалы и способы их конструирования, системы больших данных, искусственный интеллект (Artificial Intelligence – AI) и нейротехнологии. Следует отметить, что AI является одним из наиболее значимых и прорывных, т. к. AI определяет технологическую составляющую большинства СЦТ, например, интеллектуальные производственные технологии, сенсорика и робототехника.

В дорожной карте развития СКТ «Нейротехнологии и искусственный интеллект» выделены семь сквозных цифровых субтехнологий [2]: перспективные методы и технологии в АІ, компьютерное зрение, нейроинтерфейсы и др. В РФ направления внедрения технологий АІ АІ регламентируются Национальной стратегией развития АІ [3]. В рамках национального проекта «Экономика данных» до середины 2024 г. будет обновлен федеральный проект по АІ, в котором будет усилена значимость АІ в становлении цифрового будущего РФ и ее технологического суверенитета в области АІ [4, 5]. Согласно изменениям, внесен-

¹ В 2017 г. утверждена программа «Цифровая экономика Российской Федерации», где был приведен перечень СЦТ; к 2019 г. эта программа перестала действовать.

ным в Национальную стратегию развития AI, до 80 % сотрудников российских компаний к 2030 г. должны владеть навыками использования технологий AI. Доля приоритетных отраслей экономики с высоким значением индекса готовности к внедрению технологий AI в 2030 г. должна вырасти до 95 % [5. С. 14].

Вице-премьер РФ Д. Чернышенко отметил, что средний уровень внедрения АІ в приоритетные отрасли страны составляет 31,5 %; при этом во многих сферах деятельности состоялся переход от стадии разработки технологий АІ к их практическому применению. Объем национального рынка AI по итогам 2022 г. превысил 650 млрд р., что на 18 % больше, чем в 2021 г. Более 1000 национальных компаний ведут разработки в этой сфере, и свыше 90 исследовательских центров изучают ИИ и разработки новых решений [6]. Д. Чернышенко подчеркнул, что государство планирует обязать российские компании использовать технологии АІ для получения государственных субсидий [7]. В источнике [8] отмечена значимость технологий AI в развитии стартапов в России. Более 50 % компаний страны используют АІ в своей деятельности, 20 % планируют внедрить технологии глубокого обучения в свою работу. Необходимо заметить, что промышленные стартапы – один из путей реализации научного и инженерно-творческого потенциала в условиях цифровой экономики [9].

На сегодняшний день АІ – основа цифровой трансформации инженерной деятельности, а большинству специалистов, работающих в промышленном секторе российской экономики, требуется выполнять профессиональные функции, применяя технологии АІ. Поэтому создание новых рабочих мест требует высокого уровня развития цифровых компетенций в области AI. В исследовании [10] констатируется дефицит и острая потребность в высококвалифицированных инженерных кадрах для современной промышленности. В связи с этим наибольший рост числа бюджетных мест на 2024/25 учебный год в вузах РФ произойдет по программам подготовки инженеров их станет на 2281 больше, например, станет больше на 505 бюджетных мест по группе «Машиностроение» [11]. На инженерные направления по программам высшего образования установлено 254081 место по всем уровням образования, что на 2263 места больше, чем в 2023/24 учебном году [12].

Университеты, осуществляющие подготовку инженеров, должны ориентироваться на современный рынок труда, который трансформируется под влиянием запросов цифровой экономики. Особую значимость в развитии кадрового потенциала инженерно-технических сотрудников производственных предприятий представляют технологии AI. В этой связи необходимо констатировать острую потребность современного рынка труда в инженерных кадрах, которые обладают развитыми компетенциями в области АІ и способны применять технологии AI для обработки и анализа большого объема промышленных данных², разработки инновационных цифровых отраслевых решений. В сложившихся условиях нового технологического уклада XXI в. требуется изменить подготовку будущих инженеров в вузах, включив в обучение студентов дисциплины, связанные с изучением АІ.

Ход исследования

Тотальная цифровая трансформация значительно влияет на технологическую составляющую профессиональной деятельности инженера, дополняя и тем самым обогащая ее применением специализированного прикладного программного обеспечения, специализированных баз данных, программирования и информационно-математических моделей для обработки, анализа и прогнозирования большого объема промышленных данных преимущественно с помощью технологий АІ. В нормативных документах [4, 5] под АІ понимается комплекс технологических решений, позволяющий имитировать когнитивные функции человека и получать при выполнении конкретных задач результаты, сопоставимые с результатами интеллектуальной деятельности человека. Комплекс технологических решений включает в себя информационно-коммуникационную инфраструктуру, программное обеспечение (в котором используются методы машинного обучения), процессы и сервисы по обработке данных и поиску решений. К технологиям AI относят совокупность технологий, включающую: компьютерное зрение, обработку естественного языка, распознавание

² Промышленные данные – информация, создаваемая и обрабатываемая в производственных и технологических процессах выпуска промышленной продукции [5. C. 3].

и синтез речи, интеллектуальную поддержку принятия решений и перспективные методы AI. В основе перечисленных технологий AI лежит машинное обучение (Machine Learning – ML) и глубокое обучение (нейросетевые технологии) [5].

Аналитический обзор работ [13–16] показал лучшие практики внедрения технологий AI для разработки цифровых решений в промышленной отрасли. Ю.П. Похолков в статье, посвященной концепции развития инженерного образования в современных условиях, отмечает «повышение требований к владению выпускниками современными цифровыми и информационными технологиями (включая искусственный интеллект, Big Data и пр.)» [17. С. 98]. Al автоматизирует рутинные задачи специалистов, алгоритмы АІ успешно применяются для анализа и обработки больших данных, выявления трендов и формирования новых подходов к решению сложных задач [18]. А.В. Меренков констатирует факт, что разработка, внедрение и распространение робототехники, АІ и других СЦТ актуализирует проблему подготовки инженерных кадров. В этих условиях вопросы подготовки будущих инженеров в области AI приобретают особую актуальность [19]. Обозначенные процессы обуславливают важность своевременной трансформации подготовки будущих инженеров в университетах в аспекте активного включения в основные образовательные программы (ООП) дисциплин, связанных с изучением AI.

В рамках исполнения перечня поручений Президента РФ по итогам конференций Al Journey 2020 [20] и Al Journey 2023 [21] утверждены инструкции для развития и повсеместного внедрения АІ; разработан образовательный модуль для изучения АІ и модель компетенций в области АІ, являющаяся достаточно гибкой для того, чтобы университеты могли отражать в ООП свою специфику [22]. Компетенциями в области АІ должны овладеть специалисты самых разных отраслей современной экономики страны. В 2022 г. Минобрнауки РФ при участии Альянса в сфере AI и крупнейших национальных цифровых компаний разработали образовательный модуль «Системы искусственного интеллекта». Этот модуль (или его разделы) уже включили в ООП для технических и нетехнических специальностей всех уровней высшего образования и дополнительные профессиональные программы 540 образовательных организаций

[23]. В нормативных документах [24, 25] представлен прототип рабочей программы модуля «Системы искусственного интеллекта». Образовательный результат освоения студентами технологий АІ направлен на формирование цифровых компетенций в области АІ, которые являются важными цифровыми навыками в XXI в. [26].

Опыт формирования цифровых компетенций в области AI изучается как в России [26, 27 и др.], так и за рубежом [28–30 и др.]. Рассмотрим некоторые интерпретации феномена «цифровые компетенции в области AI».

Опыт развития цифровых компетенций студентов в области СЦТ, в частности АІ, только начинает складываться в национальных технических университетах. Согласно Концепции развития цифровых компетенций студентов Национального исследовательского университета «Высшая школа экономики» [27], в ближайшие годы студенты в составе сквозных компетенций будут системно осваивать цифровые компетенции. В этой концепции приведено определение «цифровые компетенции» как «комплекс компетенций по работе в цифровой среде и с цифровыми продуктами, включая активность по созданию и сбору данных, их обработке и анализу, а также по автоматизации процессов с помощью компьютерных технологий». К сквозным цифровым компетенция относятся: 1) цифровая грамотность, 2) алгоритмическое мышление и программирование, 3) анализ данных и методы AI [27. C. 3]. Эти компетенции интерпретируются как «вне-профессиональные», т. е. сквозные, и на том или ином уровне осваиваются всеми студентами независимо от направления их подготовки.

Эксперты образовательной платформы Edutoria от Сбербанка предложили модель цифровых навыков, которые рассматриваются как важные цифровые компетенции для работы и карьеры в digital-среде. В этой модели выделена группа продвинутых цифровых навыков в области AI и ML: использование AI как передового способа ведения и развития бизнеса; применение для решения ежедневных бизнес-задач технологии AI – робототехника, ML, нейронные сети [26].

В нормативном документе [31] представлен перечень ключевых компетенций цифровой экономики. Принимая во внимание тот факт, что в условиях Industry 4.0 объем данных растет экспоненциально, сегодняшнее

распространение данных сделало их слишком большими по размеру и размерности, для того чтобы специалист мог их анализировать. В этой связи технологии АІ являются незаменимым современным цифровым инструментом для научно-исследовательских проектов в промышленности. Таким образом, ключевая компетенция «управление информацией и данными» может «включить» в себя цифровую компетенцию в области АІ, которая рассматривается как способность специалиста применять технологии АІ для управления информацией и промышленными данными: поиском нужных источников информации и данных, обработкой и анализом больших объемов промышленных данных с целью эффективного использования выявленных закономерностей и трендов при решении задач профессиональной деятельности.

В отчете Юнеско [28] предложена система цифровых компетенций в области АІ и цифровой трансформации для служащих государственного сектора. Модель цифровых компетенций также включает цифровые компетенции, характерные для области АІ, целью которых является способность к выявлению и раскрытию основных элементов АІ: углубленного понимания АІ (включая прогнозирование текущих технологических разработок), выявления и определения проблем, для решения которых важно использовать технологии АІ; улучшения услуг или процессов при решении проблемы безопасности и конфиденциальности данных.

В работе [29] исследуются цифровые компетенции в области AI у будуших бухгалтеров. Благодаря этим сформированным компетенциям студенты способны применять такие технологии AI, как ML, для автоматизации рутинных задач, сокращая при этом риск человеческой ошибки в бухгалтерском учете и процессах аудита; идентифицировать области будущей профессиональной деятельности, в которой ИИ позволит принять правильное решение, усилит эффективность и точность к составлению финансовых отчетов; осуществить обработку и анализ больших наборов данных, применяя методы и технологии ML.

Ученые Д. Лонг и Б. Магерко [30] предложили 16 компетенций в области АІ, которые люди должны сформировать: распознавание той или иной технологии АІ, понимание АІ, междисциплинарные навыки, различение общего и узкого АІ, определение сильных и слабых

сторон AI, представление будущих применений AI и их воздействия на общество, представление знаний, принятие решений, понимание ML, признание роли человека в AI, компетентность в области данных, обучение на основе данных, критическая интерпретация данных, высокоуровневые рассуждения AI, датчики и этические соображения, стоящие за ними.

Анализ нормативных документов [1–3, 23–27] и специальной литературы [13–16] позволил понимать цифровые компетенции в области АI у инженера технического профиля следующим образом:

- способен использовать методы, алгоритмы и инструментальные средства AI в последующей профессиональной деятельности в качестве инженера, обрабатывать и анализировать промышленные данные, создавать инновационные цифровые решения производственных задач; оценивать эффективность и перспективы применения технологий AI;
- способен выявить естественнонаучную сушность проблем, возникающих в ходе профессиональной деятельности в области моделирования и анализа сложных естественных и технических интеллектуальных искусственных систем.

Рассмотрим реализацию подготовки будущих инженеров в области AI в Омском государственном техническом университете по следующим направлениям подготовки: 11.03.01 «Радиотехника», 11.03.03 «Конструирование и технология электронных средств», 11.03.02 «Инфокоммуникационные технологии и системы связи», 11.03.04 «Электроника и наноэлектроника», 12.03.01 «Приборостроение», 13.03.02 «Электроэнергетика и электротехника». Технологии ИИ изучаются студентами в дисциплинах «Машинное обучение» и «Интеллектуальный анализ данных». Для освоения этих дисциплин студенты предварительно изучают дисциплины «Цифровая грамотность», «Языки и технологии программирования» и «Программирование на языке Python», в результате освоения которых у них формируются такие сквозные цифровые компетенции, как цифровая грамотность, алгоритмическое мышление и программирование. . На сегодняшний день Python – популярный и эффективный инструмент AI, в том числе ML и нейронных сетей (НС). Освоение этих дисциплин может быть основой для выполнения выпускной квалификационной работы.

ML – тип AI, ориентированный на создание компьютерных систем, обучающихся на основе данных. Широкий спектр методов, которые охватывает ML, позволяет программным приложениям со временем улучшать свою производительность. Алгоритмы ML обучены находить взаимосвязи и закономерности в данных; они используют исторические данные для прогнозирования, классификации, кластеризации, уменьшения размерности. Глубокое обучение – подобласть ML, которая занимается глубокими НС, состоящими из большого числа слоев для извлечения высокоуровневых абстракций из данных. Модели глубокого обучения автоматически изучают и извлекают иерархические представления данных, что делает их эффективными в таких задачах ML, как распознавание изображений, текста, видео и речи [32].

Интеллектуальный анализ данных (Data Mining, DM) изучает алгоритмы и вычислительные парадигмы, позволяющие разработать информационно-математическую модель для поиска закономерностей в больших базах данных, выполнять прогнозирование. DM – одна из ключевых технологий более общего процесса под названием «Обнаружение знаний в базах данных» (Knowledge Discovery in Databases, KDD), цель которого – извлечение полезных знаний из необработанных данных. KDD включает в себя отбор данных, очистку, кодирование с использованием различных методов математической статистики и алгоритмов ML, визуализацию сгенерированных структур данных [33].

В соответствии со спецификой современной инженерной деятельности и специальной литературы [13–19, 32, 33] целесообразно выделить следующее содержание дисциплин «Машинное обучение» (табл. 1) и «Интеллектуальный анализ данных» (табл. 2).

Целью освоения дисциплины «Машинное обучение» является формирование у студентов теоретических знаний, практических умений и навыков по основам МL, овладение студентами моделями, методами и инструментарием МL, приобретение навыков исследования промышленных данных в соответствующей отрасли цифровой экономики.

Целью освоения дисциплины «Интеллектуальный анализ данных» является формирование у студентов теоретических знаний,

практических навыков и умений в области задач исследования и анализа больших объемов промышленных данных, их решения методами ML для визуализации структур промышленных данных, выявления корреляций, тенденций и закономерностей в соответствующей отрасли цифровой экономики.

В качестве расчетно-графической работы по дисциплине «Машинное обучение» студентам необходимо разработать дэшборд с помощью Streamlit для инференса (вывода) модели ML³ к заданному набору данных и формирование прогноза, например, прогнозирование потребления электроэнергии на предприятии. Дэшборд представляет собой аналитическую информационную панель в виде Webприложения, разработанного средствами Streamlit. Инференс ML представляет собой развертывание программного приложения в производственной среде, т. к. сама модель ML представляет собой программный код, реализующий математический алгоритм, который производит вычисления на основе данных.

По этой дисциплине студентам в качестве расчетно-графической работы рекомендуется разработать дэшборд с помощью Streamlit для инференса (вывода) модели ML к заданному набору данных и выполнить анализ данных с различными визуализациями полученных структур данных, интерпретации результатов анализа данных, которые понятны конечному пользователю этой модели.

В качестве самостоятельной работы по дисциплинам «Машинное обучение» и «Интеллектуальный анализ данных» целесообразно рекомендовать студенту освоение массовых онлайн-курсов (МООК), в которых будущий инженер может получить дополнительные сведения об аналитике данных, в том числе предиктивной, ML, HC и DM. Более того, студент приобретает опыт самостоятельного изучения учебного материала МООК в дистанционном формате как в синхронном, так и асинхронном режимах, что позволяет обучаемым получить доступ к онлайн-ресурсам обучения и адаптироваться к виртуальной среде онлайн-образования. Полученные навыки облегчают обучаемым онлайн-коммуникацию, что имеет решающее значение в глобализированном и взаимосвязанном мире и умении учиться в течение всей жизни [35].

³ Инференс модели ML – процесс ввода входных данных в реальном времени в алгоритм ML (или «модель ML») для расчета выходных данных. Этот процесс также называется «введение в эксплуатацию модели ML» или «запуск модели ML в производство» [34].

Таблица 1.Дисциплина «Машинное обучение» для студентов инженерно-технических специальностейTable 1.Discipline "Machine Learning" for students of engineering and technical specialties

Наименование раздела Name section	Содержание Content
Введение в ML Introduction to ML	Al и ML. ML в науке технике. Типы ML. Классификация задач ML. Проблемы ML. Жизненный цикл модели ML. Схема проекта по ML. Разведочный анализ данных с помощью библиотек Python (NumPy, Pandas, Polars, Matplotlib, Seaborn). Преобразование категориальных признаков Al and ML. ML in science technology. Types of ML. Classification of ML problems. ML problems. Life cycle of an ML model. ML project diagram. Exploratory data analysis using Python libraries (NumPy, Pandas, Polars, Matplotlib, Seaborn). Transformation of categorical features
Обучение с учителем Training with teacher	Регрессия как задача ML. Метрики оценки регрессии: MSE, MAE, R2 (коэффициент детерминации). Линейная регрессия, полиномиальная регрессия. Переобучение, регуляризация, Ridge, LASSO, Elastic Net. Классификация как задача ML. Бинарная и многоклассовая классификация. Метрики оценки классификации: точность и полнота, F1 и Каппа оценки, ROC-AUC. Валидационная и тестовая выборка. Методы кросс-валидации. Метрический классификатор к-ближайших соседей (kNN). Байесовский классификатор. Логистическая регрессия как линейный классификатор. Решающие деревья. Ансамблевые модели (бэггинг, бустинг, стэкинг). Градиентный бустинг над деревьями. LightGBM, XGBoost, CatBoost Regression as a ML task. Regression evaluation metrics: MSE, MAE, R2 (coefficient of determination). Linear regression, polynomial regression. Retraining, regularization, Ridge, LASSO, Elastic Net. Classification as a ML task. Binary and multi-class classification. Classification evaluation metrics: precision and recall, F1 and Kappa scores, ROC-AUC. Validation and test set. Cross-validation methods. Metric k-nearest neighbors (kNN) classifier. Bayesian classifier. Logistic regression as a linear classifier. Decisive trees. Ensemble models (bagging, boosting, stacking). Gradient boosting over trees. LightGBM, XGBoost, CatBoost
Обучение без учителя Training without teacher	Кластеризация как задача ML. Метрики оценки кластеризации. Метрическая кластеризация. Алгоритм к средних. Иерархические и неиерархические алгоритмы кластеризации. ЕМ-алгоритм на примере смеси Гауссиана. Задача понижения размерности. Методы выбора признаков. Методы выделения признаков. Понижение размерности методами t-SNE, UMAP Clustering as a ML problem. Clustering evaluation metrics. Metric clustering. k-means algorithm. Hierarchical and non-hierarchical clustering algorithms. EM algorithm using the example of a Gaussian mixture. Dimensionality reduction problem. Feature selection methods. Feature extraction methods. Dimensionality reduction using t-SNE, UMAP methods
Основы глубокого обучения (Deep Learning, DL) Basics of Deep Learning (DL)	Системы DL. Глубокие HC. Модель искусственного нейрона. Функции активации. Функции ошибки HC, обучение с помощью обратного распространения градиента. Понятие бэтча и эпохи Базовая архитектура HC. Полносвязные HC (Fully connected neural networks, FCNN). TensorFlow и API Keras для построения FCNN. Регрессия и классификация с помощью FCNN. Сверточные HC (Convolutional Neural Network, CNN). Операции сверток, max-pooling. Классификация изображений. Архитектуры CNN: VGG, Inception, ResNet. Трансферное обучение DL systems. Deep NS. Artificial neuron model. Activation functions. NN error functions, learning using gradient backpropagation. The concept of batch and era Basic architecture of the neural network. Fully connected neural networks (FCNN). TensorFlow and Keras API for building FCNN. Regression and classification using FCNN. Convolutional neural network (CNN). Convolution, max-pooling operations. Classification of images. CNN architectures: VGG, Inception, ResNet. Transfer training

Table 2. Discipline "Data Mining" for students of engineering and technical specialties

Наименование раздела Name section	Содержание/Content
Основы DM DM basics	DM в науке и технике. Основные и продвинутые подходы для анализа данных. Фундаментальные понятия DM. Модели, алгоритмы и технологии DM. Классификация задач DM. Этапы DM. Предварительная обработка данных. Методы устранения пропусков DM in Science and Technology. Basic and advanced approaches for data analysis. Fundamental concepts of DM. Models, algorithms and DM technologies. Classification of DM tasks. Stages of DM. Pre-processing of data. Methods for eliminating gaps
Методы обучения с учителем в DM Supervised learning methods in DM	Основные понятия регрессионного анализа. Множественный регрессионный анализ. Корреляционно-регрессионный анализ. Обнаружение логических закономерностей в данных. Алгоритм Аргіогі для поиска ассоциативных правил. Метод опорных векторов. Ядерный трюк. Методы деревьев решений. Многомерные методы для анализа данных Basic concepts of regression analysis. Multiple regression analysis. Correlation and regression analysis. Detecting logical patterns in data. Apriori algorithm for finding association rules. Support Vector Machine (SVM). Nuclear trick. Decision tree methods. Multivariate methods for data analysis
Методы обучения без учителя в DM Unsupervised learning methods in DM	Автоматическое группирование данных. Основные понятия и методы кластерного анализа, интерпретация результатов. Методы k-средних++, k-медоиды, DBSCAN. Снижение размерности данных и отбор признаков: метод главных компонент. Поиск аномалий. Визуализация данных Automatic data grouping. Basic concepts and methods of cluster analysis, interpretation of results. Methods k-means++, k-medoids, DBSCAN. Data dimensionality reduction and feature selection: principal component method. Search for anomalies. Data visualization
Нейронные сети в DM Neural networks in DM	Нейросетевое представление неизвестных знаний и закономерностей. Методы и модели НС. Многослойная НС прямого распространения (Multilayer Feed-Forward Neural Networks, MFFNN). Архитектура MFFNN. Обучение MFFNN. Самоорганизующаяся НС (Self Organizing Neural Network, SONN), или карты Кохонена. Архитектура НС Кохонена. Кластеризация НС Кохонена. Обучение НС Кохонена Neural network representation of unknown knowledge and patterns. Methods and models of neural networks in DM. Multilayer Feed-Forward Neural Networks (MFFNN). MFFNN architecture. MFFNN training. Self-Organizing Neural Network (SONN), or Kohonen maps. Architecture of NS Kohonen. Kohonen NN clustering. NS Kohonen training

На данный момент времени в России разработаны МООК, которые можно рекомендовать студентам для дополнительного самостоятельного изучения МL и DM в виртуальных средах национальных цифровых образовательных платформ, например, «Открытое образование» [36] и Stepic [37].

МООК для дисциплины «Машинное обучение»:

- «Основы машинного обучения (вводный курс)», разработчик НИУ «Высшая школа экономики» [38];
- «Основы машинного обучения», разработчик ФГАОУ ВО «Московский государственный университет им. М.В. Ломоносова» [39];
- «Введение в машинное обучение», разработчик ФГАОУ ВО «Санкт-Петербургский политехнический университет Петра Великого» [40];

- «Разработка ML сервиса: от идеи к прототипу», разработчик НИУ «Высшая школа экономики» [41];
- «Введение в Data Science и машинное обучение» от «Bioinformatic Institute» [42]. МООК для дисциплины «Интеллектуальный анализ данных»:
- «Основы программирования на языке Python для интеллектуального анализа данных», разработчик ФГАОУ ВО «Университет науки и технологий МИСИС» [43];
- «Сбор и анализ данных в Python», разработчик НИУ «Высшая школа экономики» [44];
- «Статистика для анализа данных», разработчик НИУ «Высшая школа экономики» [45];
- «Введение в Анализ данных», разработчик ФГБОУ ВО СОГУ им. К.Л. Хетагурова [46].

Для дальнейшего повышения уровня развития цифровых компетенций в области ИИ студентам рекомендуется зарегистрироваться

на всемирно известной платформе Kaggle⁴ [47]. В этой виртуальной среде студент может исследовать предлагаемые наборы данных для соревнований или из репозитория Kaggle для разработки цифровых решений посредством ML и DM, участвовать в соревнованиях по ML, обмениваться опытом с другими специалистами сферы Data Science и ML. Таким образом, студенты, а впоследствии инженеры технического профиля, способны «вырасти» в области АІ, влиться в сообщество единомышленников ML и приобрести бесценный опыт для развития карьеры, а значит, могут практиковать и совершенствовать свои цифровые компетенции в области АІ в течение всей своей профессиональной деятельности.

Заключение

АІ стремительно развивается и тотально внедряется во все секторы цифровой экономики. Национальный цифровой суверенитет и технологическое лидерство во многом

зависит от наличия грамотных и высококвалифицированных инженерных кадров, обладающих сформированными цифровыми компетенциями в области AI. В условиях сложившегося технологического уклада важно в университетах реализовать подготовку будущих инженеров к применению технологий AI в предстоящей профессиональной деятельности. Именно ML и DL являются ключевыми технологиями АІ, с которых следует начинать обучение студентов в области AI, т. к. именно ML и DL являются основой других технологий АІ, которые влияют на технологические инновации в науке и технике, без них инженеры не смогут в полной мере приобретать актуальные знания и важные цифровые навыки, которые необходимы для успешной карьеры в XXI в. Таким образом, ML и DL определяют ключевой стек технологий АІ, необходимый для формирования цифровых компетенций в области АІ инженера в реалиях Industry 4.0.

СПИСОК ЛИТЕРАТУРЫ

- Указ президента РФ 01.12.2016 N 642 «О стратегии научно-технологического развития Российской Федерации». URL: http://static.kremlin.ru/media/events/files/ru/uZiATIOJiq5tZsJgqcZLY9YyL8P WTXQb.pdf (дата обращения: 08.02.2024).
- 2. Дорожная карта развития «сквозной» цифровой технологии «Нейротехнологии и искусственный интеллект». URL: https://rfrit.ru/media/documents/%D0%94%D0%9A_%D0%A1%D0%A6%D0%A2_%D0%98%D0%98.pdf (дата обращения: 08.02.2024).
- 3. Национальная стратегия развития искусственного интеллекта до 2030 г. Утверждена Указом Президента РФ от 10 октября 2019 г. № 490. URL: https://www.garant.ru/products/ipo/prime/doc/72738946/ (дата обращения: 08.02.2024).
- 4. Обновленный федеральный проект «Искусственный интеллект» станет частью нового нацпроекта «Экономика данных». URL: https://economy.gov.ru/material/news/obnovlennyy_federalnyy_proekt_iskusstvennyy_intellekt_stanet_chastyu_novogo_nacproekta_ekonomika_dannyh.html (дата обращения: 08.02.2024).
- 5. Указ Президента РФ от 15.02.2024 № 124 "О внесении изменений в Указ Президента Российской Федерации от 10 октября 2019 г. № 490 «О развитии искусственного интеллекта в Российской Федерации» и в Национальную стратегию, утвержденную этим Указом". URL: http://publication.pravo.gov.ru/document/0001202402150063 (дата обращения: 17.02.2024).
- 6. K 2030 году России понадобится 70 000 ИИ-специалистов. URL: https://www.vedomosti.ru/management/articles/2023/11/27/1007796-k-2030-godu-rossii-ponadobitsya-70-000-ii-spetsialistov (дата обращения: 08.02.2024).
- 7. Использование ИИ будет обязательным для получения компаниями субсидий из бюджета. URL: https://tass.ru/ekonomika/19360777 (дата обрашения: 08.02.2024).
- 8. Головина С. Роль искусственного интеллекта в развитии стартапов в 2023 году. URL: https://m. hightech.plus/2023/11/24/rol-iskusstvennogo-intellekta-v-razvitii-startapov-v-2023-godu (дата обрашения: 08.02.2024).
- 9. Дудкина И. Перспективы промышленных стартапов // Главный инженер. Управление промышленным производством. $2023. N^{\circ}$ 4. URL: https://panor.ru/articles/perspektivy-promyshlennykh-startapov/92078.html# (дата обращения: 08.02.2024).
- 10. Потребность в инженерах растет. URL: https://issek.hse.ru/news/875130529.html (дата обрашения: 08.02.2024).

⁴ Kaggle – цифровая платформа для соревнований по Data Science и онлайн-сообщество ученых, занимающихся исследованием данных, и специалистов в области ML

- 11. Российским вузам на следующий учебный год направлено более 620 тыс. бюджетных мест. URL: https://minobrnauki.gov.ru/press-center/news/novosti-ministerstva/77192/ (дата обращения: 08.02.2024).
- 12. Минобрнауки России проводит комплексную работу по совершенствованию инженерного образования. URL: https://minobrnauki.gov.ru/press-center/news/obrazovanie/78541/ (дата обрашения: 08.02.2024).
- 13. Велигура А. В., Мусаева Э.К. Анализ существующих методологий интеллектуального анализа данных для производственных систем // Вестник Луганского национального университета имени Владимира Δ аля. 2020. N° 5 (35). С. 45–50.
- 14. Дьяконов А.Г., Головина А.М. Выявление аномалий в работе механизмов методами машинного обучения // Аналитика и управление данными в областях с интенсивным использованием данных: Сб. научных трудов XIX Международной конференции DAMDID/ RCDL'2017. М.: Федеральный исследовательский центр "Информатика и управление" Российской академии наук, 2017. С. 469–476.
- 15. Коцоев К.И., Трыков Е.Л., Трыкова И.В. Применение свёрточной нейронной сети для сегментации сигналов электроприводной арматуры // Известия высших учебных заведений. Ядерная энергетика. $2021. N^{\circ} 2. C. 158–168.$ DOI: 10.26583/npe/2021.2.14
- Predictive anomaly detection for marine diesel engine based on echo state network and autoencoder / C. Qu, Z. Zhou, Z. Liu, S. Jia // Energy Reports. – 2022. – Vol. 8. – № 5. – P. 998–1003. DOI: https://doi.org/10.1016/j.egyr.2022.01.225
- 17. Похолков Ю.П. Инженерное образование России: проблемы и решения. Концепция развития инженерного образования в современных условиях // Инженерное образование. 2021. № 30. С. 96–107. DOI: 10.54835/18102883 2021 30 9
- 18. Искусственный интеллект: к новой парадигме инженерного образования? / Ю.П. Похолков, К.К. Зайцева, Е.В. Исаева, И.О. Муравлев // Инженерное образование. 2023. № 34. С. 180–189. DOI: 10.54835/18102883 2023 34 16
- 19. Меренков А.В., Мельникова О.Я. Практики организации подготовки инженерных кадров, востребованных индустрий 4.0 // Инженерное образование. 2021. № 29. С. 23–33. DOI: 10.54835/18102883_2021_29_2
- 20. Перечень поручений Президента Российской Федерации по итогам конференции «Путешествие в мир искусственного интеллекта» 4 декабря 2020 года № Пр-2242. URL: http://www.kremlin.ru/acts/assignments/orders/64859 (дата обрашения: 08.02.2024).
- 21. Перечень поручений по итогам конференции «Путешествие в мир искусственного интеллекта» 29 января 2023 г. № Пр-1720. URL: https://www.garant.ru/products/ipo/prime/doc/406165361/ (дата обрашения: 08.02.2024).
- 22. Россия формирует кадровый потенциал в сфере искусственного интеллекта. URL: https://static.minobrnauki.gov.ru/press-center/news/obrazovanie/74181/ (дата обращения: 08.02.2024).
- 23. Письмо Министерства науки и высшего образования РФ от 2 июля 2021 г. N MH-5/2657 «О направлении информации». URL: https://www.garant.ru/products/ipo/prime/doc/401364914/ (дата обращения: 08.02.2024).
- 24. Письмо Минобрнауки России от 14.06.2023 г. № MH-5/570. URL: https://gzgu.ru/doc/vo-info/2022/file 2023-06-15 6d19063bc03c45217154536eb2db329a.pdf (дата обращения: 08.02.2024).
- 25. Письмо Минобрнауки России от 14.06.2023 г. № МН-5/179660. URL: https://fgosvo.ru/uploadfiles//metod/Ps_MON_5_179660_14062023.pdf (дата обращения: 08.02.2024).
- 26. Цифровые навыки: какие бывают и зачем их нужно развивать. URL: https://edutoria.ru/blog/post/cifrovye-navyki-zachem-nuzhny-kakie-nuzhno-razvivat (дата обращения: 08.02.2024).
- 27. Концепция развития цифровых компетенций студентов Национального исследовательского университета «Высшая школа экономики». М.: Изд-во НИУ ВШЭ, 2022. URL: https://www.hse.ru/docs/575682494.html (дата обрашения: 08.02.2024).
- 28. Artificial intelligence and digital transformation: competencies for civil servants. Working Group Report on Al Capacity Building / T. Balbo di Vinadio, C. van Noordt, Vargas Alvarez del Castillo Carlos, R. Avila // Unesco. September, 2022. 79 p. URL: https://unesdoc.unesco.org/ark:/48223/pf0000383325 (дата обращения: 08.02.2024).
- 29. The effect of technology readiness on adopting artificial intelligence in accounting and auditing in Vietnam / Nguyen Thi Mai Anh, Le Thi Khanh Hoa, Lai Phuong Thao, Duong Anh Nhi, Nguyen Thanh Long, Nguyen Thanh Truc, Vu Ngoc Xuan // Journal of Risk and Financial Management. 2024. Vol. 17. Iss. 1. 27. DOI: https://doi.org/10.3390/jrfm17010027.
- 30. Long D., Magerko B. What is Al literacy? Competencies and design considerations // CHI '20: Proceedings of the 2020 CHI Conference on Human Factors in Computing Systems. 2020. P. 1–16. DOI: https://doi.org/10.1145/3313831.3376727.
- 31. Об утверждении методик расчета показателей федерального проекта «Кадры для цифровой экономики» национальной программы «Цифровая экономика Российской Федерации». Приказ от 24 января 2020 г. N 41. URL: https://rulaws.ru/acts/Prikaz-Minekonomrazvitiya-Rossii-ot-24.01.2020-N-41/ (дата обращения: 08.02.2024).

- 32. Рашка С., Мирджалили В. Python и машинное обучение. Машинное и глубокое обучение с использованием Python, Scikit-learn и TensorFlow 2. СПб.: ООО «Диалектика», 2020. 848 с.
- 33. Татарникова Т.М. Интеллектуальный анализ данных. СПб.: Инфра-Инженерия, 2024. 172 с.
- 34. Understanding Machine Learning Inference. URL: https://www.run.ai/guides/machine-learning-inference/understanding-machine-learning-inference (дата обращения: 08.02.2024).
- 35. Моисеева Н.А. Развитие цифровой грамотности у студентов инженерно-технических специальностей // Инженерное образование. 2023. № 33. С. 39–48. DOI: 10.54835/18102883_2023_33_4
- 36. Национальная образовательная платформа «Открытое образование». URL: https://openedu.ru/ (дата обращения: 08.02.2024).
- 37. Образовательная платформа и конструктор онлайн-курсов «Stepik». URL: https://stepik.org (дата обращения: 08.02.2024).
- 38. MOOK «Основы машинного обучения (вводный курс)» URL: https://openedu.ru/course/hse/basic_ML/?session=2023 (дата обращения: 08.02.2024).
- 39. MOOK «Основы машинного обучения». URL: https://openedu.ru/course/msu/MACHINELEARN-ING/?session=spring_2024 (дата обращения: 08.02.2024).
- 40. MOOK «Введение в машинное обучение» URL: https://openedu.ru/course/spbstu/ MASHLEARN/?session=fall_2023# (дата обрашения: 08.02.2024).
- 41. MOOK «Разработка ML сервиса: от идеи к прототипу». URL: https://stepik.org/course/176820/syllabus (дата обращения: 08.02.2024).
- 42. MOOK «Введение в Data Science и машинное обучение». URL: https://stepik.org/course/4852/syllabus (дата обращения: 08.02.2024).
- 43. MOOK «Основы программирования на языке Python для интеллектуального анализа данных». URL: https://openedu.ru/course/misis/PTHN/?session=fall 2023 (дата обрашения: 08.02.2024).
- 44. MOOK «Сбор и анализ данных в Python». URL: https://openedu.ru/course/hse/Python_spec/?session=2023 (дата обращения: 08.02.2024).
- 45. MOOK «Статистика для анализа данных». URL: https://openedu.ru/course/hse/STATDA/?session=2022 (дата обращения: 08.02.2024).
- 46. MOOK «Введение в Анализ данных». URL: https://stepik.org/course/101913/syllabus (дата обрашения: 08.02.2024).
- 47. Цифровая платформа для соревнований по науке о данных и машинному обучению «Kaggle». URL: https://www.kaggle.com (дата обращения: 08.02.2024).

Поступила: 14.02.2024 Принята: 10.05.2024 Опубликована: 30.06.2024 UDC 378.147

DOI: 10.54835/18102883_2024_35_7

IMPORTANCE OF ENDATOAEND DIGITAL TECHNOLOGIES IN FUTURE ENGINEERS' TRAINING (BASED ON EXAMPLE OF ARTIFICIAL INTELLIGENCE)

Natalya A. Moiseeva,

Cand. Sc., Associate Professor, nat_lion@mail.ru

Omsk State Technical University, 11, Mira avenue, Omsk, 625003, Russian Federation

Current level of development of end-to-end digital technologies determines their intensive implementation in all sectors of global digital economy. In industrial sector, these technologies determine growth rate of labor productivity and level of competitiveness of enterprises. Robots, big data, machine learning and other forms of artificial intelligence are most accelerating digital transformation of economy. Particularly pressing is the issue of training highly qualified engineers to use artificial intelligence technologies in digital industry solutions and perform professional functions. The article examines such a phenomenon of digital economy as "digital competencies in artificial intelligence" among engineering students, identifying the features of the competencies and their interpretation. The paper demonstrates the experience of training future engineers in the field of artificial intelligence in disciplines "Machine Learning" and "Data Mining". The author has proposed the content of the disciplines, determined the methodological aspects of training to develop students' digital competencies in the field of artificial intelligence throughout lifelong learning.

Keywords: engineering education, engineer, artificial intelligence, machine learning, end-to-end digital technologies, digital competencies in artificial intelligence.

REFERENCES

- 1. Decree of the President of the Russian Federation 01.12.2016 N 642 "On the strategy of scientific and technological development of the Russian Federation". (In Russ.) Available at: http://static.kremlin.ru/media/events/files/ru/uZiATIOJiq5tZsJgqcZLY9YyL8PWTXQb.pdf (accessed: 8 February 2024).
- 2. Roadmap for the development of "end-to-end" digital technology "Neurotechnologies and artificial intelligence". (In Russ.) Available at: https://rfrit.ru/media/documents/%D0%94%D0%9A_%D0%A1%D0%A6%D0%A2%D0%98%D0%98.pdf (accessed: 8 February 2024).
- 3. National strategy for the development of artificial intelligence until 2030. Approved by Decree of the President of the Russian Federation of October 10, 2019 No. 490. (In Russ.) Available at: https://www.garant.ru/products/ipo/prime/doc/72738946/ (accessed: 8 February 2024).
- 4. The updated federal project "Artificial Intelligence" will become part of the new national project "Data Economy". (In Russ.) Available at: https://economy.gov.ru/material/news/obnovlennyy_federalnyy_proekt_iskusstvennyy_intellekt_stanet_chastyu_novogo_nacproekta_ekonomika_dannyh. html (accessed: 8 February 2024).
- 5. Decree of the President of the Russian Federation dated February 15, 2024 No. 124 "On introducing amendments to the Decree of the President of the Russian Federation dated October 10, 2019 No. 490 "On the development of artificial intelligence in the Russian Federation" and the National Strategy approved by this Decree". (In Russ.) Available at: http://publication.pravo.gov.ru/document/0001202402150063 (accessed: 8 February 2024).
- 6. By 2030, Russia will need 70,000 AI specialists. (In Russ.) Available at: https://www.vedomosti.ru/management/articles/2023/11/27/1007796-k-2030-godu-rossii-ponadobitsya-70-000-ii-spetsialistov (accessed: 8 February 2024).
- 7. The use of AI will be mandatory for companies to receive subsidies from the budget. (In Russ.) Available at: https://tass.ru/ekonomika/19360777 (accessed: 8 February 2024).
- 8. Golovina S. *The role of artificial intelligence in the development of startups in 2023*. (In Russ.) Available at: https://m.hightech.plus/2023/11/24/rol-iskusstvennogo-intellekta-v-razvitii-startapov-v-2023-godu (accessed: 8 February 2024).
- 9. Dudkina I. Prospects for industrial startups. *Chief engineer. Industrial production management*, 2023, no. 4. (In Russ.) at: https://panor.ru/articles/perspektivy-promyshlennykh-startapov/92078.html# (accessed: 8 February 2024).
- 10. The need for engineers is growing. (In Russ.) Available at: https://issek.hse.ru/news/875130529.html (accessed: 8 February 2024).
- 11. More than 620 thousand budget places have been allocated to Russian universities for the next academic year. (In Russ.) Available at: https://minobrnauki.gov.ru/press-center/news/novosti-ministerst-va/77192/ (accessed: 8 February 2024).

- 12. The Russian Ministry of Education and Science is carrying out comprehensive work to improve engineering education. (In Russ.) Available at: https://minobrnauki.gov.ru/press-center/news/obrazovanie/78541/ (accessed: 8 February 2024).
- 13. Veligura A.V., Musayeva E.K. Application of intellectual analysis methods in industrial production. *Bulletin of Lugansk National University named after Vladimir Dahl*, 2020, no. 5 (35), pp. 45–50. (In Russ.)
- 14. Dyakonov A.G., Golovina A.M. Detection of anomalies in the operation of mechanisms using machine learning methods. *Analytics and data management in areas with intensive use of data: Coll. scientific proceedings of the XIX International Conference DAMDID/RCDL'2017*. Moscow, Federal Research Center "Informatics and Management" of the Russian Academy of Sciences, 2017. pp. 469–476. (In Russ.)
- 15. Kotsoev K.I., Trykov E.L., Trykova I.V. The use of convolutional neural network for segmenting signals of electrically-actuated valves. *Izvestiya vuzov. Yadernaya Energetika*, 2021, no. 2, pp. 158–168. (In Russ.) DOI: 10.26583/npe/2021.2.14
- 16. Qu C., Zhou Z., Liu Z., Jia S. Predictive anomaly detection for marine diesel engine based on echo state network and autoencoder. *Energy Reports*, 2022, vol. 8, no. 5, pp. 998–1003. DOI: https://doi.org/10.1016/j.egyr.2022.01.225
- 17. Pokholkov Yu.P. Engineering education in Russia: problems and solutions. The concept of development of engineering education in modern conditions. *Engineering education*, 2021, no. 30, pp. 96–107. (In Russ.) DOI: 10.54835/18102883_2021_30_9
- 18. Pokholkov Yu.P., Zaitseva K.K., Isaeva E.V., Muravlev I.O. Artificial intelligence: towards a new paradigm in engineering education? *Engineering education*, 2021, no. 29, pp. 180–189. (In Russ.) DOI: 10.54835/18102883 2023 34 16
- 19. Merenkov A.V., Melnikova O.Ya. Organizational practices for the training of engineering personnel in demand by industry 4.0. *Engineering education*, 2021, no. 29, pp. 23–33. (In Russ.) DOI 10.54835/18102883 2021 29 2
- 20. List of instructions of the President of the Russian Federation following the results of the conference "Journey into the World of Artificial Intelligence" on December 4, 2020 No. Pr-2242. (In Russ.) Available at: http://www.kremlin.ru/acts/assignments/orders/64859 (accessed: 8 February 2024).
- 21. List of instructions based on the results of the conference "Journey to the World of Artificial Intelligence" on January 29, 2023 No. Pr-1720. (In Russ.) Available at: https://www.garant.ru/products/ipo/prime/doc/406165361/ (accessed: 08.02.2024).
- 22. Russia is building human resources in the field of artificial intelligence. (In Russ.) Available at: https://static.minobrnauki.gov.ru/press-center/news/obrazovanie/74181/ (accessed: 8 February 2024).
- 23. Letter of the Ministry of Science and Higher Education of the Russian Federation dated July 2, 2021 N MN-5/2657 "On the direction of information". (In Russ.) Available at: https://www.garant.ru/products/ipo/prime/doc/401364914/ (accessed: 08.02.2024).
- 24. Letter of the Ministry of Education and Science of Russia dated June 14, 2023 No. MN-5/570. (In Russ.) Available at: https://gzgu.ru/doc/vo-info/2022/file_2023-06-15_6d19063bc03c45217154536eb2db3 29a.pdf (accessed: 8 February 2024).
- 25. Letter of the Ministry of Education and Science of Russia dated June 14, 2023 No. MN-5/179660. (In Russ.) Available at: https://fgosvo.ru/uploadfiles//metod/Ps_MON_5_179660_14062023.pdf (accessed: 8 February 2024).
- *26. Digital skills: what they are and why they need to be developed.* (In Russ.) Available at: https://edutoria.ru/blog/post/cifrovye-navyki-zachem-nuzhny-kakie-nuzhno-razvivat (accessed: 8 February 2024).
- 27. Concept for the development of digital competencies of students at the National Research University Higher School of Economics. Moscow, National Research University Higher School of Economics Publ. House, 2022. (In Russ.) Available at: https://www.hse.ru/docs/575682494.html (accessed: 8 February 2024).
- 28. Balbo di Vinadio T., Van Noordt C., Vargas Alvarez del Castillo Carlos, Avila R. Artificial intelligence and digital transformation: competencies for civil servants. Working Group Report on Al Capacity Building. *Unesco*, September, 2022, 79 p. Available at: https://unesdoc.unesco.org/ark:/48223/pf0000383325 (accessed: 8 February 2024).
- 29. Nguyen Thi Mai Anh, Le Thi Khanh Hoa, Lai Phuong Thao, Duong Anh Nhi, Nguyen Thanh Long, Nguyen Thanh Truc, Vu Ngoc Xuan. The effect of technology readiness on adopting artificial intelligence in accounting and auditing in Vietnam. *Journal of Risk and Financial Management*, 2024, vol. 17, Iss. 1, 27. DOI: https://doi.org/10.3390/jrfm17010027.
- Long D., Magerko B. What is Al literacy? Competencies and design considerations. CHI '20: Proceedings of the 2020 CHI Conference on Human Factors in Computing Systems. 2020. pp. 1–16. DOI: https://doi.org/10.1145/3313831.3376727
- 31. On approval of methods for calculating indicators of the federal project "Personnel for the Digital Economy" of the national program "Digital Economy of the Russian Federation". Order dated January 24, 2020 N 41. (In Russ.) Available at: https://rulaws.ru/acts/Prikaz-Minekonomrazvitiya-Rossii-ot-24.01.2020-N-41/ (accessed: 8 February 2024).

- 32. Raska S., Mirjalili V. *Python and machine learning. Machine and deep learning using Python, Scikit-learn and TensorFlow 2*. St. Petersburg, Dialectics LLC Publ., 2020. 848 p. (In Russ.)
- 33. Tatarnikova T.M. *Data mining.* St. Petersburg, Infra-Engineering Publ., 2024. 172 p. (In Russ.)
- 34. Understanding Machine Learning Inference. Available at: https://www.run.ai/guides/machine-learning-inference/understanding-machine-learning-inference (accessed: 8 February 2024).
- 35. Moiseeva N.A. Development of digital literacy of engineering students. *Engineering education*, 2023, no. 33, pp. 39–48. (In Russ.) DOI 10.54835/18102883_2023_33_4
- 36. National educational platform "Open Education". Available at: https://openedu.ru/ (accessed: 8 February 2024).
- 37. Educational platform and online course designer "Stepik". Available at: https://stepik.org (accessed: 8 February 2024).
- 38. MOOC "Basics of Machine Learning (introductory course)". Available at: https://openedu.ru/course/hse/basic ML/?session=2023 (accessed: 8 February 2024).
- 39. MOOC "Fundamentals of Machine Learning". Available at: https://openedu.ru/course/msu/MACHINE LEARNING/?session=spring_2024 (accessed: 8 February 2024).
- 40. MOOC "Introduction to Machine Learning". Available at: https://openedu.ru/course/spbstu/MASHLEARN/?session=fall_2023# (accessed: 8 February 2024).
- 41. MOOC "Development of ML service: from idea to prototype." Available at: https://stepik.org/course/176820/syllabus (accessed: 8 February 2024).
- 42. MOOC "Introduction to Data Science and Machine Learning". Available at: https://stepik.org/course/4852/syllabus (accessed: 8 February 2024).
- 43. MOOC "Fundamentals of Python Programming for Data Mining". Available at: https://openedu.ru/course/misis/PTHN/?session=fall 2023 (accessed: 8 February 2024).
- 44. MOOC "Data collection and analysis in Python". Available at: https://openedu.ru/course/hse/Python_spec/?session=2023 (accessed: 8 February 2024).
- 45. MOOC"StatisticsforDataAnalysis". Available at: https://openedu.ru/course/hse/STATDA/?session=2022 (accessed: 8 February 2024).
- 46. MOOC "Introduction to Data Analysis". Available at: https://stepik.org/course/101913/syllabus (accessed: 8 February 2024).
- 47. Digital platform for competitions in data science and machine learning "Kaggle". Available at: https://www.kaggle.com (accessed: 8 February 2024).

Received: 14.02.2024 Revised: 10.05.2024 Accepted: 30.06.2024